

VAATCHIRURGISCHE BLIK OP WONDEN

Jorg L de Bruin Vaatchirurg Erasmus MC

Disclosures

- Geen
- Wel voorstander van minimaal invasieve endovasculaire procedures

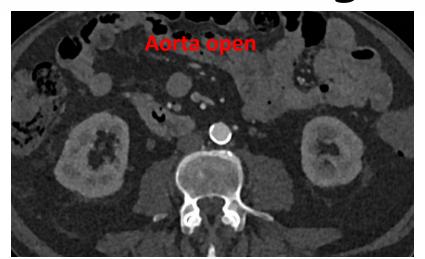
VAATCHIRURGISCHE BLIK OP WONDEN

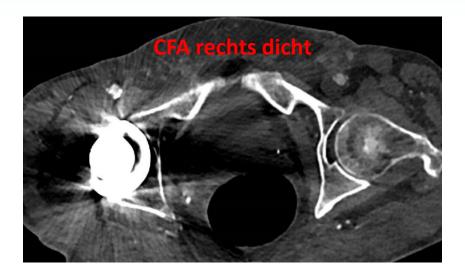
Jorg L de Bruin Vaatchirurg Erasmus MC

Introductie

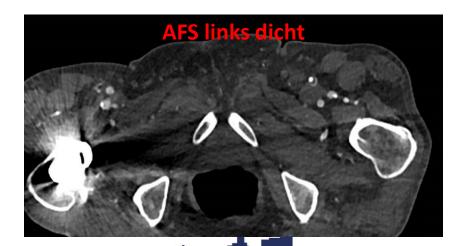
- Casus presentatie
- Evidence
- Preventie maatregelen
- Discussie

- 63 jarige patient
- VG Hypertensie, MI, PCI, Colitis Ulcerosa,
 Liesdesobstrcutie links 6 weken
- Beiderzijds niet genezende wonden
- Immuunsupressiva

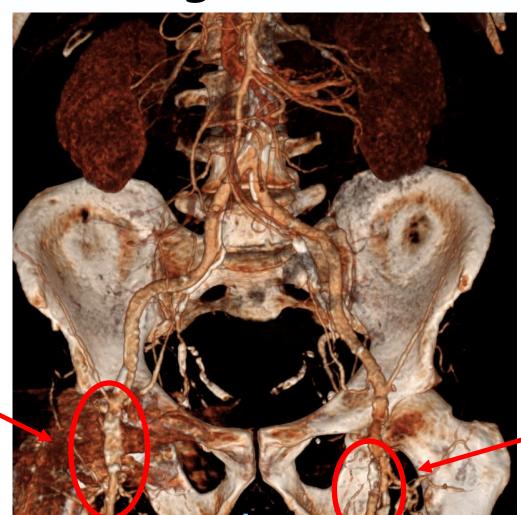




- Net operatie links gehad?
- Toch vaatonderzoek?
- CT-A verricht

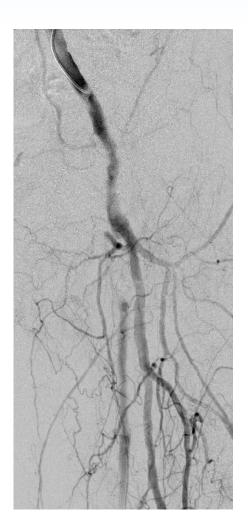


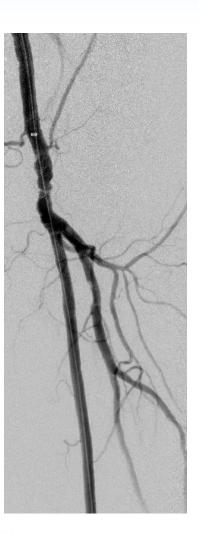
Casus CT-angio



Casus CT-angio 3D recon

CFA rechts dicht


AFS links dicht


- Aorto-iliacaal open
- CFA rechts dicht/hooggradige stenose
- AFS links dicht (na liesdesobstructie links 6w)
- Plan?
- Rechts liesdesobstructie/Links?

- Debridement benen beiderzijds
- VAC therapie
- Fysiotherapie

- Gecompliceerd door wondinfectie lies
- Antibiotica genezen
- Hoe vaak komt dit voor?

Evidence

- Liesdesobstructie perfecte operatie met goede patency!
- Excellente primaire patency rates ^{1, 2, 3}

• 1 year: 93%

• 5 year: 74-91%

• 10 year: 94%

^{1.} Lee M, et al. Vasc Med 2017;22(4):301-6

^{2.} Kang L, et al. J Vasc Surg 2008;48(4):872-7

^{3.} Kuma S, et al. Circ J 2015;80(4):964-9

Evidence

- Chirurgische infectie is een majeure complicatie na liesdesobstructie
- Chirurgische infectie (Surgical Site Infection)
 - 2.6% 31%
 - Diep vs. oppervlakkig

Evidence GIVE studie UK

- 37 centra deden mee in de GIVE studie (30 UK en zeven international)
- Inclusie: patienten na electieve en spoed chirurgie waarbij lies werd gebruikt (vaatchirurgie)
- 1337 lies incisies (1039 patienten) van
 37 centra

Evidence GIVE studie UK

37 centres deden mee in de GIVE

ORIGINAL ARTICLE

Groin wound infection after vascular exposure (GIVE) multicentre cohort study

Groin wound Infection after Vascular Exposure (GIVE) Study Group

1337 lies incisies (1039 patienten) van
 37 centra

Evidence GIVE studie

- SSI >>>> 8.6% (wondinfecties)
 - 4.6% superficial
 - 3.8% deep
- Chirurgische re-interventie 43%
- 90-dagen mortaliteit (8.4% versus 4.9%; P = 0.114)
- Significant meer nierfalen (19.6% versus 11.7%; P = .018)
- Patienten met wondinfectie significante opanmeduur (P = .005)

Evidence GIVE studie UK

Table 1. Results of multivariable analysis for all surgical site infections (SSIs) and deep/organ space SSIs in 1 039 patients undergoing an arterial procedure through 1 339 groin incisions. Table adapted from tables presented in the Groin wound Infection after Vascular Exposure study⁵

Variable	OR (95% CI)	p value
Independent predictors of all SSIs		
Female	1.708 (1.095 - 2.663)	.018
Weight		
Normal, BMI 18.5 — 24.9	Reference	
Underweight, BMI < 18.5	1.868 (0.822 - 4.243)	.14
Overweight,	1.302 (0.648 - 2.618)	.46
BMI 25 – 29.9		
Obese, BMI ≥ 30	2.916 (1.511 – 5.626)	
Ischaemic heart disease	2.213 (1.471 – 3.330)	<.001
Skin prep		
Alcoholic chlorhexidine	Reference	
Aqueous chlorhexidine	0.674 (0.251 - 1.810)	
Alcoholic betadine	0.944 (0.540 - 1.650)	
Aqueous betadine	2.784 (1.515 - 5.117)	
Two solutions	1.022 (0.329 - 3.172)	.97
Bypass/patch material		
None	Reference	
Vein	2.420 (1.178 - 4.970)	
Xenograft	4.864 (2.427 - 9.748)	
Prosthetic	2.556 (1.268 - 5.149)	.009
Operation time — h	1.152 (1.022 - 1.299)	.021
Independent predictors of		
deep/organ space SSIs		
Female sex	1.947 (1.064 - 3.560)	.031
Diabetes, any	1.947 (1.068 - 3.549)	.030
Skin prep		
Alcoholic chlorhexidine	Reference	
Aqueous chlorhexidine	0.897 (0.208 - 3.864)	.88
Alcoholic betadine	0.717 (0.285 - 1.806)	.48
Aqueous betadine	4.129 (1.961 - 8.694)	
Two solutions	1.310 (0.293 - 5.854)	
Bypass/patch material		
None	Reference	
Vein	1.027 (0.387 - 2.726)	.96
Xenograft	2.798 (1.155 - 6.778)	.023
Prosthetic	1.384 (0.565 - 3.392)	.48

Groin Wound Infection after Vascular Exposure (GIVE) Risk Prediction Models: Development, Internal Validation, and Comparison with Existing Risk Prediction Models Identified in a Systematic Literature Review

Brenig L. Gwilym a,*, Graeme K. Ambler b, Athanasios Saratzis c, David C. Bosanquet a, on behalf of the Groin wound Infection after Vascular Exposure (GIVE) Study Group d,†

- Kritieke ischemie patienten met wonden
- Re-interventie
- ASA 4/5
- Roken
- Leeftijd > 65 jaar

Preventie is essentieel

Dwarse incisie?

Verlengde duur antibiotica?

Lokale antibiotica?

• Wond drain?

PICO of andere dressing/wondbedekking

- 24 studies tussen 1980 2020
- 17 RCT's 7 cohort studies
- 4130 lies incisies 67.5% man
- Mean follow-up 49 dagen
- Wondinfectie 17.7%!

Vascular Infection

Eur J Vasc Endovasc Surg (2021) 61, 636-646

SYSTEMATIC REVIEW

Editor's Choice — Systematic Review and Meta-Analysis of Wound Adjuncts for the Prevention of Groin Wound Surgical Site Infection in Arterial Surgery

Brenig L. Gwilym **, George Dovell *, Nikesh Dattani *, Graeme K. Ambler *, Joseph Shalhoub **, Rachael O. Forsythe *, Ruth A. Benson *, Sandip Nandhra *, Ryan Preece *, Sarah Onida ***, Louise Hitchman *, Patrick Coughlin *, Athanasios Saratzis *, David C. Bosanquet *

- ^a South East Wales Vascular Network, Royal Gwent Hospital, Newport, UK
- ^b University of Bristol, Bristol, UK ^c Queen Elizabeth Hospital Birmingham, Birmingham, UK
- ^d Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London, UK
- ^eAcademic Section of Vascular Surgery, Department of Surgery & Cancer, Imperial College London, London, UK
- ^f Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK ^g University of Birmingham, Birmingham, UK
- h Northern Vascular Centre, Institute of population health sciences, Newcastle University, Newcastle, UK
- Cheltenham General Hospital, Cheltenham, UK
- Hull York Medical School, Hull, UK
- k Cardiovascular Interdisciplinary Research Centre, University of Cambridge, Cambridge, UK
- NIHR Leicester Biomedical Research Centre, University of Leicester Department of Cardiovascular Sciences, Leicester, UK

WHAT THIS PAPER ADDS

This review supports closed incision negative pressure wound therapy (ciNPWT) as an effective intervention for preventing both superficial and deep surgical site infections (SSIs) in groin incisions following arterial intervention. Available evidence suggests local antibiotics do not reduce overall SSI rates, but may reduce superficial SSIs, however data are heterogenous and lacking. Subcuticular sutures, as opposed to other methods of closure, appear to reduce SSIs. The cost effectiveness of ciNPWT, and efficacy of local antibiotics (for both superficial and deep SSI) in vascular groin wounds, are research questions that should be addressed with future randomised trials.

- ciNPWT
- Lokale antibiotica
- Wond drain
- Subcuticulaire hechting
- Fibrin glue
- Silver alginaat dressing/bedekking

Vascular Infection

Eur J Vasc Endovasc Surg (2021) 61, 636-646

SYSTEMATIC REVIEW

Editor's Choice — Systematic Review and Meta-Analysis of Wound Adjuncts for the Prevention of Groin Wound Surgical Site Infection in Arterial Surgery

Brenig L. Gwilym **, George Dovell *, Nikesh Dattani *, Graeme K. Ambler *, Joseph Shalhoub *d*, Rachael O. Forsythe *, Ruth A. Benson *, Sandip Nandhra *, Ryan Preece *, Sarah Onida *d*, Louise Hitchman *, Patrick Coughlin *, Athanasios Saratzis *, David C. Bosanquet *

WHAT THIS PAPER ADDS

This review supports closed incision negative pressure wound therapy (ciNPWT) as an effective intervention for preventing both superficial and deep surgical site infections (SSIs) in groin incisions following arterial intervention. Available evidence suggests local antibiotics do not reduce overall SSI rates, but may reduce superficial SSIs, however data are heterogenous and lacking. Subcuticular sutures, as opposed to other methods of closure, appear to reduce SSIs. The cost effectiveness of ciNPWT, and efficacy of local antibiotics (for both superficial and deep SSI) in vascular groin wounds, are research questions that should be addressed with future randomised trials.

^a South East Wales Vascular Network, Royal Gwent Hospital, Newport, UK

^b University of Bristol, Bristol, UK

^c Queen Elizabeth Hospital Birmingham, Birmingham, UK

^d Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London, UK

^e Academic Section of Vascular Surgery, Department of Surgery & Cancer, Imperial College London, London, UK

^fCentre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK

⁸ University of Birmingham, Birmingham, UK

h Northern Vascular Centre, Institute of population health sciences, Newcastle University, Newcastle, UK

Cheltenham General Hospital, Cheltenham, UK

Hull York Medical School, Hull, UK

Cardiovascular Interdisciplinary Research Centre, University of Cambridge, Cambridge, UK

¹NIHR Leicester Biomedical Research Centre, University of Leicester Department of Cardiovascular Sciences, Leicester, UK

- Wond drain -> geen duidelijk bewijs SSI reduction
- Fibrin glue -> geen duidelijk bewijs SSI reduction
- Silver alginate dressing -> geen duidelijk bewijs SSI reduction

ciNPWT

Study or Subgroup	ciNI Events		Standar Events	d care Total	Odds Ratio (surgical site infection) M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% CI	Weight
All studies							
Karl 2013 ¹⁴	3	50	6	50		0.47 [0.11, 1.99]	6.0%
Matatov 2013 ¹⁵	3	52	19	63		0.14 [0.04, 0.51]	7.3%
Koetje 2015 ¹⁷	5	40	3	50		2.24 [0.50, 10.00]	5.6%
Sabat 2016 ¹⁸	2	30	7	30		0.23 [0.04, 1.24]	4.7%
Flemming 2017 ¹⁹	2	73	5	78		0.41 [0.08, 2.19]	4.6%
Lee 2017 ²⁰	7	53	11	49		0.53 [0.19, 1.49]	10.1%
Pleger 2017 ²¹	5	58	30	71		0.13 [0.05, 0.36]	10.2%
Kwon 2018 ²⁴	6	59	12	60		0.45 [0.16, 1.30]	9.9%
Engelhardt 2018 ²²	9	64	19	68		0.42 [0.17, 1.02]	12.7%
Gombert 2018 ²³	13	98	30	90		0.31 [0.15, 0.63]	16.2%
Hasselmann 2020 ¹⁶	8	78	23	80		0.28 [0.12, 0.68]	12.8%
Total	63	655	165	689	•	0.34 [0.23, 0.51]	100.0%
Heterogeneity: Tau ² =	0.10; Chi2	= 13	3.16, df =	10 (p =	$(2.21); I^2 = 24\%$		
Test for overall effect:	Z = 5.45 (p < .0	00001)	-			

ciNPWT

	ciNl
Study or Subgroup	Events
All studies	
Karl 2013 ¹⁴	3
Matatov 2013 ¹⁵	3
Koetje 2015 ¹⁷	5
Sabat 2016 ¹⁸	2
Flemming 2017 ¹⁹	2
Lee 2017 ²⁰	7
Pleger 2017 ²¹	5
Kwon 2018 ²⁴	6
Engelhardt 2018 ²²	9
Gombert 2018 ²³	13
Hasselmann 2020 ¹⁶	8
Total	63
Heterogeneity: Tau ² =	0.10; Chi ²
Test for overall effect:	

Odds Ratio ⁄I-H, Random, 95% CI	Weight
0.47 [0.11, 1.99]	6.0%
0.14 [0.04, 0.51]	7.3%
2.24 [0.50, 10.00]	5.6%
0.23 [0.04, 1.24]	4.7%
0.41 [0.08, 2.19]	4.6%
0.53 [0.19, 1.49]	10.1%
0.13 [0.05, 0.36]	10.2%
0.45 [0.16, 1.30]	9.9%
0.42 [0.17, 1.02]	12.7%
0.31 [0.15, 0.63]	16.2%
0.28 [0.12, 0.68]	12.8%
0.34 [0.23, 0.51]	100.0%

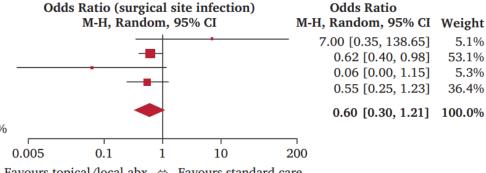
Odds Ratio

7.00 [0.35, 138.65]

0.62 [0.40, 0.98]

0.06 [0.00, 1.15]

0.55 [0.25, 1.23]


0.60 [0.30, 1.21] 100.0%

Editor's Choice - Systematic Review and Meta-Analysis of Wound Adjuncts for the Prevention of Groin Wound Surgical Site Infection in Arterial Surgery

Lokale antibiotica

	Fopical/loca	l antibio	tics	Standar	d care
Study or Subgroup	Events	Total		Events	Total
Pitt 1980 ²⁵	3	59		0	56
Mohammed 2013 ²⁶	42	243		53	211
Costa Almeida 2014 ²⁷	7 0	30		6	30
Wubbeke 2020 ²⁸	11	151		17	137
Total	56	483		76	434
Heterogeneity: Tau ²	= 0.19; <i>Chi</i> ²	= 4.98, d	f = 3	p = .17	(7) ; $I^2 = 1$

40% Test for overall effect: Z = 1.43 (p = .15)

Favours topical/local abx ⇔ Favours standard care

5.1%

53.1%

36.4%

5.3%

From the New England Society for Vascular Surgery

Meta-analysis of prophylactic closed-incision negative pressure wound therapy for vascular surgery groin wounds

Griffin Boll, MD, Peter Callas, PhD, and Daniel J. Bertges, MD, Burlington, Vt

ABSTRACT

Objective: A previous meta-analysis of randomized controlled trials (RCTs) evaluating the efficacy of closed incision negative pressure wound therapy (ciNPWT) on vascular surgery groin wounds reported a reduction in surgical site infections (SSIs). Our aim was to perform a comprehensive, updated meta-analysis after the largest multicenter RCT on the subject to date reported no benefits from ciNPWT.

Methods: A systematic review identified RCTs that had compared the primary outcome of the incidence of postoperative SSIs of groin incisions treated with cinVPWT or standard dressings. The secondary outcomes included wound dehiscence, a composite incidence of seroma, lymph leakage, and hematoma, the need for reoperation, in-hospital mortality, the need for readmission, and the hospital length of stay. The odds ratios (ORs) were compared across the studies using a random effects meta-analysis. The risk of bias was assessed using the Cochrane risk of bias tool, Harbord test, and trim-and-fill analysis.

Results: Eight RCTs with 1125 incisions (ciNPWT, n = 555 [49.3%]: control, n = 570 [50.7%]) were included. The RCTs included three studies inside and five outside the United States. ciNPWT was associated with a significant reduction in the rate of SSIs (OR, 0.39, 95% confidence interval [CI], 0.24-0.63; P < .001). No significant differences were found in the rate of wound dehiscence (OR, 1.11: 95% CI, 0.67-1.83; P = .68), composite incidence of seroma, lymph leak, or hematoma (OR, 0.49, 95% CI, 0.13-1.76; P = .27), need for reoperation (OR, 0.68: 95% CI, 0.40-116; P = .16), or need for readmission (OR, 0.60; 95% CI, 0.30-1.21; P = .15), it was not possible to quantitatively evaluate in-hospital mortality or the hospital elength of stay. The risk of bias assessment identified a high risk of bias for participant blinding in all eight studies, a low risk for randomization and outcome reporting, and variability between studies for the other methods. We found no evidence of publication bias.

Conclusions: Our meta-analysis of pooled data has suggested that prophylactic use of cINPWT for vascular groin incisions will be associated with reduced rates of SSIs. The greatest benefits were seen in the trials with higher baseline rates of SSIs in the control group. (J Vasc Surg 2022:75:2086-93.)

Keywords: Negative pressure wound therapy; Surgical site infections; Wound complications

Surgical site infections (SSIs) of groin incisions are a major source of patient morbidity leading to increased rates of reintervention, hospital lengths of stay, and, even, mortality after vascular reconstruction.^{1,2} SSIs also have a dramatic effect on the financial costs of the healthcare system.^{2,4} Specific patient and procedural characteristics

From the Department of Surgery, University of Vermont Medical Center⁸; and the Department of Medical Biostatistics, University of Vermont.^b Author conflict of interest: none.

Presented at the Forty-eighth Annual Meeting of the New England Society for Vascular Surgery, Cape Neddick, Me, October 15-17, 2021.

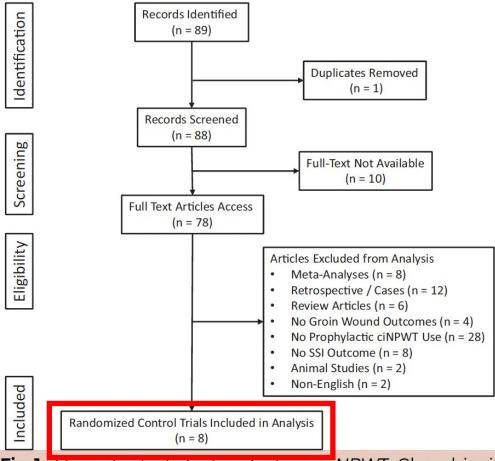
Additional material for this article may be found online at www.jvascsurg.org. Correspondence: Daniel J. Bertges, MD. Department of Surgery, University of Vermont Medical Center, 111 Colchester Ave, Burlington, VT 05401 (e-mail: daniel bertoes@uymhealth.org.)

The editors and reviewers of this article have no relevant financial relationships to disclose per the JVS policy that requires reviewers to decline review of any manuscript for which they may have a conflict of interest.

0741-5214

Copyright © 2022 by the Society for Vascular Surgery. Published by Elsevier Inc. https://doi.org/10.1016/j.jvs.2021.12.070 such as obesity, female sex, reoperative surgery, infrainguinal bypass, and malnutrition have been identified as risk factors for the development of SSIs.²⁵⁻¹⁰ Bundled 'best practice' initiatives to reduce SSIs, including standardized perioperative antibiotic administration, skin preparation, euthermia, euglycemia, and postoperative wound management, have been studied with variable results.¹⁰⁻¹⁵

Prophylactic use of closed incision negative pressure wound therapy (ciNPWT) has received enthusiasm as a strategy to reduce SSIs for vascular surgery groin wounds. The mechanism of action by which ciNPWT has a beneficial effect is not entirely clear but might be related to application during and maintenance of a sterile environment, improvement in tissue perfusion, reductions in site edema, and reductions in tension across the incision.


Although multiple observational studies and randomized controlled trials (RCTs) have demonstrated variable results regarding the effects of ciNPWT on postoperative SSIs.¹⁴⁻²⁰ subsequent meta-analyses have suggested

ciNPWT

Fig 1. Flow chart of study selection. *ciNPWT*, Closed incision negative pressure wound therapy; *SSI*, surgical site infection.

From the New England Society for Vascular Surgery

Meta-analysis of prophylactic closed-incision negative pressure wound therapy for vascular surgery groin wounds

Griffin Boll, MD, Peter Callas, PhD, and Daniel J. Bertges, MD, Burlington, Vt

ABSTRACT

Objective: A previous meta-analysis of randomized controlled trials (RCTs) evaluating the efficacy of closed incision negative pressure wound therapy (clnWVI) or navacular surgery groin wounds reported a reduction in surgical site infections (SSIs) (Our aim was to perform a comprehensive, updated meta-analysis after the largest multicenter RCT on the subject to date reported no benefits from cNPWT.

Methods. A systematic review identified BCTs that had compared the primary outcome of the incidence of postoperative SSIs of groin incidents treated with chiPMPOr standard releasings. The secondary outcomes included wound delibierance, a composite incidence of seroma, lymph leakage, and hernatoms, the need for reoperation, in hospital mortality, the need for readmission, and the hospital length of stay. The odds ratios (DSI) were compared across the studies using a random effects meta-analysis. The risk of bias was assessed using the Cochrane risk of bias tool, Harbord test, and trimand-fill analysis.

Results: Eight RCTs with 1125 incisions (IcNPVT, n = 555 (49.5%); control, n = 70 (5.07%)) were included. The RCTs included three RCTs under suice sindle and five outside the United States ciNPVT was associated with a significant reduction in the rate of 55ks (ICR, 0.39 89% confidence interval [CT] 0.24-0.63 P. C.001). No significant differences were found in the rate of viound deficience (OR, 0.10 89% confidence (OR, 0.10 89.5% confidence of seroms, https://doi.org/10.1016/10.0016

Conclusions: Our meta-analysis of pooled data has suggested that prophylactic use of cINPWT for vascular groin incisions will be associated with reduced rates of SSIs. The greatest benefits were seen in the trials with higher baseline rates of SSIs in the control group. (J Vasc. Surg 2022;752086-93.)

Keywords: Negative pressure wound therapy: Surgical site infections; Wound complications

Surgical site infections (SSIs) of groin incisions are a major source of patient morbidity leading to increased rates of reintervention, hospital lengths of stay, and, even, mortality after vascular reconstruction.¹² SSIs also have a dramatic effect on the financial costs of the healthcare system.²⁴ Specific patient and procedural characteristics

From the Department of Surgery, University of Vermont Medical Center^b; and the Department of Medical Biostatistics, University of Vermont, ^b Author conflict of interest: none.

Presented at the Forty-eighth Annual Meeting of the New England Society for Vascular Surgery, Cape Neddick, Me. October 15-17, 2021. Additional material for this article may be found online at www.jvascsurg.org.

Additional material for this article may be found online at www.jwassurgorg.
Correspondence: Daniel J. Bettges, MD, Department of Surgery, University of
Vermont Medical Center, III Colchester Ave, Burlington, VT 05401 [e-mail:
daniel.bertgos@uvmhealth.org).
The editors and reviewers of this article have no relevant financial relationships to

disclose per the 3VS policy that requires reviewers to decline review of any manuscript for which they may have a conflict of interest. 0741-5214

Copyright © 2022 by the Society for Vascular Surgery. Published by Elsevier Inc. https://doi.org/10.1036/j.vs.2021.12.020

2086

such as obesity, female sex reoperative surgery, infrainguinal bypass, and mainutrition have been identified as risk factors for the development of SSIs 23-10 Bundled or "best practice" initiatives to reduce SSIs including standardized perioperative antibiotic administration, skin preparation, euthermia, euglycemia, and postoperative wound management, have been studied with variable results.³¹³

Prophylactic use of closed inclision negative pressure wound therapy (cihPWT) has received enthusiasm as a strategy to reduce SSis for vascular surgery groin wounds. The mechanism of action by which cihPWT has a beneficial effect is not entirely clear but might be related to application during and maintenance of a sterile environment improvement in itsuse perfusion; reductions in site edema, and reductions in tension across the incision.

Although multiple observational studies and randomized controlled trials (RCTs) have demonstrated variable results regarding the effects of ciNPWT on postoperative SSIs, ¹⁴⁻²⁰ subsequent meta-analyses have suggested

Griffin Boll, MD,^a Peter Callas, PhD,^b and Daniel J. Bertges, MD,^a Burlington, Vt

Study	Treat Yes		Coi Yes			Odds Ratio with 95% CI	Weight (%)
Sabat, 2016	2	28	7	26		0.27 [0.05, 1.39]	6.24
Lee, 2017	6	47	9	40		0.57 [0.19, 1.73]	10.72
Engelhardt, 2018	9	55	19	49		0.42 [0.17, 1.02]	13.78
Kwon, 2018	6	53	12	48		0.45 [0.16, 1.30]	11.43
Pleger, 2018	5	53	30	41		0.13 [0.05, 0.36]	11.73
Gombert, 2018	13	85	30	60		0.31 [0.15, 0.63]	16.21
Hasselmann, 2019	8	70	22	58		0.30 [0.12, 0.73]	13.79
Bertges, 2021	17	98	16	103	_	— 1.12 [0.53, 2.33]	16.10
Overall				·	-	0.39 [0.24, 0.63]	

1/16 1/8 1/4 1/2 1

Heterogeneity: $\tau = 0.22$, $\Gamma = 49.26\%$, H = 1.97

Test of $\theta_i = \theta_j$: Q(7) = 13.66, p = 0.06

Test of θ = 0: z = -3.85, p = 0.00

Random-effects REML model

Griffin Boll, MD,^a Peter Callas, PhD,^b and Daniel J. Bertges, MD,^a Burlington, Vt

Study	80,000	10000000	Co Yes	10000						Ratio 5% CI	Weight (%)
Sabat, 2016	1	29	1	32					1.10 [0.0	7, 18.46]	3.14
Kwon, 2018	1	58	1	59			+		1.02 [0.0	6, 16.65]	3.19
Pleger, 2018	4	54	8	63			-	_	0.58 [0.1	7, 2.04]	15.87
Hasselmann, 2019	14	64	9	71			+	_	1.73 [0.7	0, 4.26]	30.61
Bertges, 2021	17	98	17	102			-	-	1.04 [0.5	0, 2.15]	47.19
Overall							-	•	1.11 [0.6	7, 1.83]	1
Heterogeneity: τ ² = 0	0.00, I ²	= 0.0	00%, ا	H ² = 1.00							•
Test of $\theta_i = \theta_j$: Q(4)	= 1.96,	p = 0	.74								
Test of $\theta = 0$: $z = 0.4$	11, p =	0.68									
					1/16	1/4	1	4	16		

Random-effects REML model

Wond dehiscentie

Griffin Boll, MD,^a Peter Callas, PhD,^b and Daniel J. Bertges, MD,^a Burlington, Vt

Study	Trea Yes	tment No		ntrol					Odds Ratio with 95% CI	Weight
Study	168	NO	168	NO					Will 95% CI	(%)
Kwon, 2018	0	59	3	57				_	0.14 [0.01, 2.73]	13.03
Pleger, 2018	1	57	12	59	_				0.09 [0.01, 0.69]	20.49
Hasselmann, 2019	17	61	22	58					0.73 [0.35, 1.52]	38.41
Bertges, 2021	5	110	3	116			-		- 1.76 [0.41, 7.53]	28.06
Overall						-		-	0.49 [0.13, 1.76]	
Heterogeneity: $\tau^2 = 0$	0.98, I ²	= 61.	70%,	$H^2 = 2.6^{\circ}$	1					
Test of $\theta_i = \theta_j$: Q(3) =	= 6.58,	p = 0.	.09							
Test of $\theta = 0$: $z = -1$.	10, p =	0.27								
					1/128	1/16	1/2	4	-	

Random-effects REML model

Griffin Boll, MD,^a Peter Callas, PhD,^b and Daniel J. Bertges, MD,^a Burlington, Vt

	Treat	ment	Co	ntrol				Odds Ra	atio	Weight
Study	Yes	No	Yes	No			-	with 95%	CI	(%)
Lee, 2017	2	51	1	48		_	-	- 1.88 [0.17,	21.44]	4.60
Kwon, 2018	5	54	11	49			_	0.41 [0.13,	1.27]	19.83
Pleger, 2018	1	57	10	61		-		0.11 [0.01,	0.86]	6.20
Gombert, 2018	5	93	6	84		_		0.75 [0.22,	2.56]	17.05
Hasselmann, 2019	3	75	5	75		_		0.60 [0.14,	2.60]	12.17
Bertges, 2021	16	99	16	103		-	_	1.04 [0.49,	2.19]	40.16
Overall						•		0.68 [0.40,	1.16]	7
Heterogeneity: τ [*] = 0	0.04, I [*]	= 7.5	9%, I	H ⁻ = 1.08	3					
Test of $\theta_i = \theta_j$: Q(5) =	5.73,	p = 0	.33							
Test of $\theta = 0$: $z = -1$.	41, p =	0.16								
					1/64	1/8	1 8	_		

Random-effects REML model

Re-operatie

Griffin Boll, MD,^a Peter Callas, PhD,^b and Daniel J. Bertges, MD,^a Burlington, Vt

Study	Treat Yes	ment No		ntrol No							Odds Ratio with 95% CI	Weight (%)
Lee, 2017	2	51	2	47	_			-			0.92 [0.12, 6.81]	12.32
Kwon, 2018	4	55	10	50		-		+			0.36 [0.11, 1.23]	33.02
Bertges, 2021	8	107	11	108		-		+	_		0.73 [0.28, 1.90]	54.66
Overall						-		+			0.60 [0.30, 1.21]	
Heterogeneity:	т ^² = 0.0	00, l [*] =	= 0.00	%, H ⁻ = 1	.00			Т				
Test of $\theta_i = \theta_j$: C	Q(2) = 1	1.00, p	0.6	31								
Test of $\theta = 0$: z	= -1.43	3, p =	0.15									
					1/8	1/4	1/2	1	2	4	-	

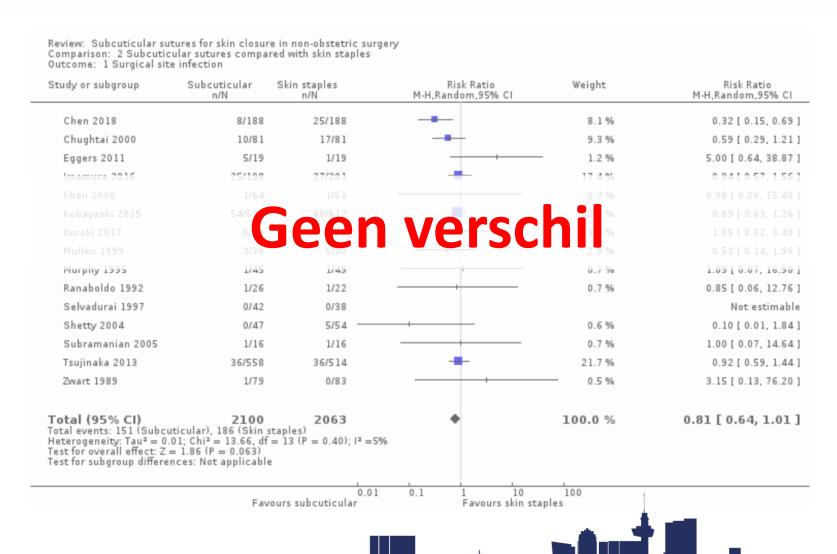
Random-effects REML model

Subcuticulaire hechtingen

Cochrane Database of Systematic Reviews

Subcuticular sutures for skin closure in non-obstetric surgery (Review)

Goto S, Sakamoto T, Ganeko R, Hida K, Furukawa TA, Sakai Y


Subcuticulaire hechtingen

Review: Subcuticular sutures for skin closure in non-obstetric surgery Comparison: 2 Subcuticular sutures compared with skin staples Outcome: 1 Surgical site infection

Study or subgroup	Subcuticular n/N	Skin staples n/N	Risk Ratio M-H,Random,95% CI	Weight	Risk Ratio M-H,Random,95% CI
Chen 2018	8/188	25/188		8.1 %	0.32 [0.15, 0.69]
Chughtai 2000	10/81	17/81	-	9.3 %	0.59 [0.29, 1.21]
Eggers 2011	5/19	1/19	-	1.2 %	5.00 [0.64, 38.87]
lmamura 2016	25/198	27/201	-	17.4 %	0.94 [0.57, 1.56]
Khan 2006	1/64	1/63		0.7 %	0.98 [0.06, 15.40]
Kobayashi 2015	54/620	60/612	#	32.1 %	0.89 [0.63, 1.26]
Kuroki 2017	5/79	5/83		3.5 %	1.05 [0.32, 3.49]
Mullen 1999	3/38	6/40		2.9 %	0.53 [0.14, 1.96]
Murphy 1995	1/45	1/49		0.7 %	1.09 [0.07, 16.90]
Ranaboldo 1992	1/26	1/22		0.7 %	0.85 [0.06, 12.76]
Selvadurai 1997	0/42	0/38			Not estimable
Shetty 2004	0/47	5/54		0.6 %	0.10 [0.01, 1.84]
Subramanian 2005	1/16	1/16		0.7 %	1.00 [0.07, 14.64]
Tsujinaka 2013	36/558	36/514	+	21.7 %	0.92 [0.59, 1.44]
Zwart 1989	1/79	0/83		0.5 %	3.15 [0.13, 76.20]
F otal (95% CI) otal events: 151 (Subcuti deterogeneity: Tau² = 0.0)	2100 (cular), 186 (Skin s 1; Chi² = 13.66, df	2063 staples) = 13 (P = 0.40); I ² =5	♦	100.0 %	0.81 [0.64, 1.01]

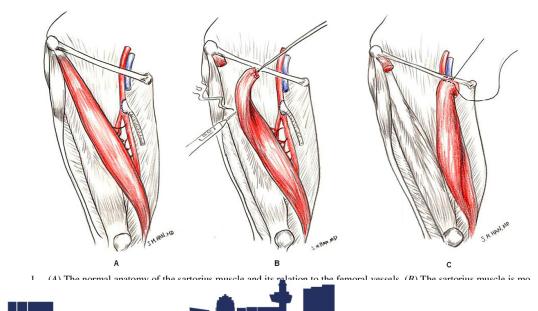
Subcuticulaire hechtingen

Longitudinal versus transverse incision for common femoral artery exposure: a systematic review and meta-analysis

(a)	Longitu	dinal	Transv	erse		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
Chester et al.	5	85	0	82	7.7%	10.62 [0.60, 188.99]	1992	-
Beirne et al.	20	124	5	160	19.9%	5.16 [1.99, 13.37]	2008	
Swinnen et al.	10	61	3	55	17.5%	3.01 [0.87, 10.36]	2010	-
Parikh et al.	17	71	2	85	16.0%	10.18 [2.43, 42.56]	2017	
Siracuse et al.	5	1352	7	3395	18.3%	1.79 [0.57, 5.64]	2018	
Bakshi et al.	8	74	11	62	20.7%	0.61 [0.26, 1.42]	2019	
Total (95% CI)		1767		3839	100.0%	2.93 [1.12, 7.70]		-
Total events	65		28					10000
Heterogeneity: Tau2 =	0.99; Chi	= 18.4	3, df = 5 (P = 0.00	$(02); I^2 = 73$	3%		1005
Test for overall effect:	Z = 2.18 (P = 0.03	3)					0.005 0.1 1 10 20 Favours longitudinal Favours transverse

FULL TEXT ARTICLE

Systematic Review of Groin Incision Surgical Site Infection Preventative Measures in Vascular Surgery



Article in Press: Accepted Manuscript

Justin M. Robbins MD, James Courtney BSBME and Anil Hingorani MD Journal of Vascular Surgery, Copyright © 2023

Profylactische spierlap

zou moeten worden
overwogen in hoogrisico chirurgische
patiënten bij liesincisie
vaatchirurgie

Evidence conclusie

- Gebruik veneuze patch indien mogelijk
- Er lijkt evidence voor ciNPWT en dwarse incisie
- Subcuticulaire hechtingen niet echt bij te dragen
- Lokale antibiotica niet bewezen → studies underpowered?
- Hoog risico patienten (redo, kritieke ischemie, wonden, betsraling, kunststof patch) → overweeg spierlap

TAKE HOME MESSAGES

WOND INFECTIE LIES TREEDT VAAK OP 9%

ER ZIJN STRATEGIEN OM TE VOORKOMEN

VENE IS MEER RESISTENT TEGEN INFECTIE

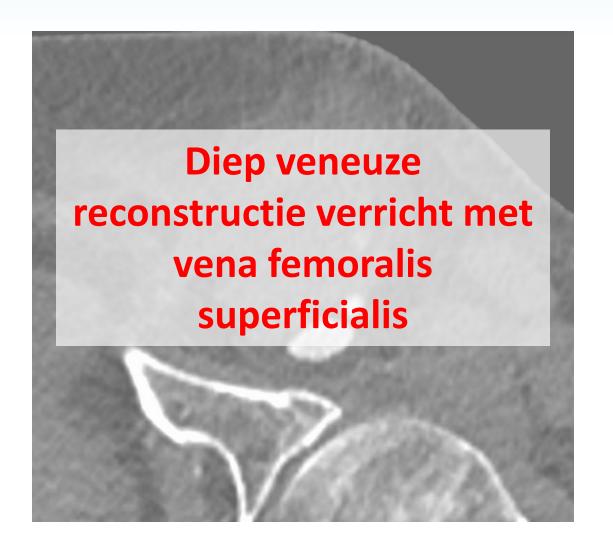
INDIEN HOOG RISICO OVERWEEG SPIERLAP

Kenniscentrum Wondzorg

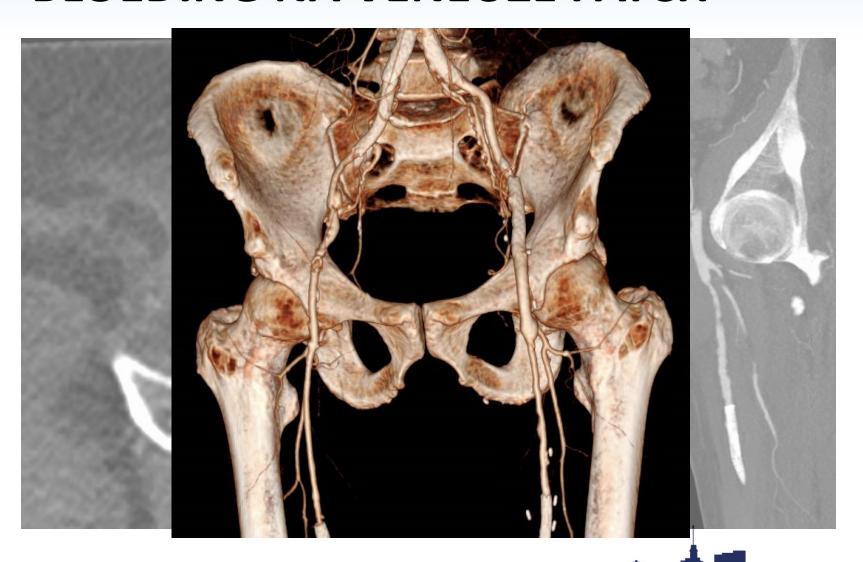
BLOEDING NA VENEUZE PATCH

CFA links bloeding

BLOEDING NA VENEUZE PATCH



BLOEDING NA VENEUZE PATCH



BLOEDING NA VENEUZE PATCH

DISCUSSIE

